Jubayer Ma Security Engine Ex-Senior Secur Hardware Secur	a hmod er @ AWS ity Engineer@Lucid M ity PhD @ Virginia Te	https://jubayer.io jubayer@vt.edu https://www.linkedin.com/in/jubayer0175/			
Summary	With 7+ years of experience in hardware-oriented system security, my expertise encompasses a wide range of interests, including the security of systems, firmware, and hardware. My doctoral research was centered on leveraging architectural and low-level hardware behaviors to develop system-level attack and defense strategies. This includes work on TEE, side-channel attacks, cloud FPGA security, and the creation of innovative frameworks for anti-counterfeit chip detection and avoidance.				
Education	PhD, Computer Engineering, Virginia Tech, USA04Thesis: The Art of SRAM Security:Advisor:Dr. Matthew HTactics for Remanence-based Attack and Strategies for DefenseAdvisor:Dr. Matthew HMS, Electrical & Computer Engineering, Auburn University, AL, USA08Thesis: Towards Unclonable System Design for Resource-Constrained ApplicationsAdvisor: Dr. Ujjwal CBS, Electrical & Electronic Engineering (EEE)03Bangladesh University of Engineering & Technology (BUET), Dhaka04				
PROFESSIONAL Experience	Amazon Lucid Motors Virginia Tech Auburn University	Security Engineer Senior Security Engineer (Red Team) Research Assistant Research Assistant	 WA 09/2024 - present CA 04/2024-09/2024 VA 08/2019-04/2024 AL 08/2017-08/2019 		
Technical Skills	 Hardware/software co-design • Applied Cryptography • ARM SoC/Cloud FPGA security (aws F1) TEE: ARM TrustZone, SGX • Linux kernel, Coreboot, Secure debug, Threat modeling C, Assembly (x86 & ARM), Verilog, Python • Cadence Design Tools, Ghidra. 				
Research Summary	First authored publ Other publications	ications in top-tier venues (4): (6)	Oakland(x1), ASPLOS(x3)		
SELECTED PUBLICATIONS	D TIONS 1. Jubayer Mahmod & Matthew Hicks. PhasePrint: Exposing Cloud FPGA Fingerprints by Inducis Timing Faults at Runtime. ASPLOS 2025.				
2. Jubayer Mahmod & Matthew Hicks. UnTrustZone: Systematic Accelerated Aging to chip Secrets. IEEE Symposium on Security and Privacy 2024.					
	3. Jubayer Mahmod & Matthew Hicks. SRAM Imprinting for System Protection and Differentiation. ACM ASIACCS 2024.				
	4. Jubayer Mahmod & Matthew Hicks. <i>Invisible Bits: Hiding Secret Messages in SRAM's Analog Domain</i> . International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'22)				
	5. Jubayer Mahmod & Matthew Hicks. SRAM Has No Chill: Exploiting Power Domain Separation to Steal On-chip Secrets. International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'22), (Acceptance rate: 20%).				
	6. Jubayer Mahmod & Matthew Hicks. Retain The Date: Purging Recycled Chips from the Supply Chain through SRAM's Data Retention Behavior (under submission)				
	7. Jubayer Mahmod & Ujjwal Guin. A Robust, Low-Cost and Secure Authentication Scheme for IoT Applications. Cryptography 4.1 (2020)				
	8. Jubayer Mahmod, Millican Spencer, Ujjawal Guin, & Vishwani Agrawal. <i>Delay Fault Testing:</i> <i>Present and Future</i> . IEEE VLSI Test Symposium (VTS'19).				
	9. Benjamin Cyr, Jubayer Mahmod, & Ujjwal Guin. Low-Cost and Secure Firmware Obfuscation Method for Protecting Electronic Systems from Cloning. IEEE Internet of Things Journal (2019)				

SELECTED PROJECTS	• Exploiting SRAM data remanence to design attacks: Leveraged SRAM's analog character- istics and power domain separation to design Volt Boot and UntrustZone. Volt Boot shows how to create artificial data retention across power cycles in an SoC 100% accuracy. Using a secure boot or a trusted execution environment can be potential mitigation, which inspired a more robust form of attack on ARM TrustZone—UntrustZone—that still exfiltrates data/code (> 98% accuracy) from on-chip SRAM using accelerated transistor wear-out.					
	 Defenses leveraging SRAM data remanence: Designed data hiding & SoC anti-counterfeit systems utilizing SRAM's analog behavior, specifically circuit aging. Invisible bits is a steganography scheme that creates a covert, cryptographically secure but plausibly deniable information transfer channel in the hardware. Further applied imprinting and data retention voltage techniques for detecting and avoiding recycled, remarked, and cloned chips. Cloud FPGA localization: Developed a cloud FPGA localization system using dynamic timing faults in functionally valid circuits, circumventing AWS security restrictions on hardware DNA access. This entirely on-chip signature extraction method achieves >99% accuracy, operates 13× faster, and costs 92% less than the state-of-the-art. 					
	• Hardware-assisted firmware obfuscation: Developed a custom MIPS core featuring a reorder cache in the instruction fetch unit, enabling dynamic and transparent reconstruction of control flow from obfuscated firmware.					
PRESENTATION & TALKS	Exploring Dual Edges of SRAM Data Remanence in SoCs: Covert Storage and Exfiltration Risks in TEE (Hardwear.io)20UnTrustZone: Systematic Accelerated Aging to Expose On-chip Secrets. (Oakland)20Invisible Bits: Hiding Secret Messages in SRAM's Analog Domain. (ASPLOS)20SRAM Has No Chill: Exploiting Power Domain Separation to Steal Onchip Secrets. (ASPLOS)20SRAM PUF-based device authentication protocol hardware demo. (HOST)20Graduate Research Showcasing. Auburn University20Hardware Trojan showcasing (hardware & poster) NAE Grand Challenges Scholars Program20					
Awards	PhD Dissertation finalist (top 5) NSF travel grant NSF travel grant Graduate school tuition fellowship Best project award Dean's List award	Symposium on Hardware Oriented Security & Trust ASPLOS, Switzerland Symposium on Hardware Oriented Security & Trust Auburn University Tensilica Xtensa Embedded-DSP design contest, India BUET	2024 2022 2019 2017-19 2016			
Service	 Reviewer: Computer Architecture letter International Conference on Co Journal of Hardware and Syster IEEE Internet of Things Journal External Reviewer: ASPLOS'24 • IEEE Transaction GLSVLSI'19 • Journal of Hardware Large Scale Integration Systems'18 	mputer Design (ICCD) ms Security ns on Circuits and Systems I'21 • VLSID'19 • DAC'19 are and Systems Security'19 • IEEE Transactions on Ve 17 &'18 • VLSI Test Symposium'18 • Transactions on Mul	2025 2024 2023 2022 • • rry tti-			